
Graphical Models and Collective Choice

Whitman Richards

Mass. Inst. of Technology CSAIL 32-364
Computer Science and Artificial Intelligence Lab
Cambridge, MA 02139 617-253-5776 wrichards@mit.edu

Final Report Contract # F49610-03-0213 22 Aug 05
AFOSR Cognition Program Dr. Robert Sorkin, Prgm. Mgr.

2005 1 0-05 -106
0



0
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, incluinng time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstandingany other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
24-08-2005 Final Performance 01-05-2000; 31-07-2005
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Graphical Models and Collective Choice

5b. GRANT NUMBER
F49620-03-1-0213
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Whitman Richards

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Mass. Institute of Technology
Computer Science & Artificial Intelligence Lab
32 Vassar Street 32-364
Cambridge, MA 02139

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIMONITOR'S ACRONYM(S)
Air Force Office of Scientific Research AFOSR
875 North Randolph Street

Suite 325, Room 3112 11. SPONSORIMONITOR'S REPORT

Arlington, Virginia 22203-1768 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

When groups of individuals make collective decisions, it is obvious that if all members share similar goals,
agreement will be reached more quickly than if members have diverse opinions. This common-sense notion is
quantified by using the framework of graphical models to relate choices that group members may favor. It is shown
that the similarity relations between members' choices play the dominant role in the ease or difficulty with which
the group can reach agreement. If similarity relations among members' choices are sparse, then consensus is likely
to be very fragile and easy to disrupt. Five specific findings of this nature are reported. In addition, there are three
other spin-off results. Two are related to biological system design; the third relates measures for predictability and
Shannon information.

15. SUBJECT TERMS
Graphical Models; Social Networks; Collective Choice; Decision-Making; Uncertainty

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
Unclassified OF ABSTRACT OF PAGES W. A. Richards

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
19 code)

617-253-5776

St andard Form 29 8 (Rev. 8-98)
2 Pro~ribed by ANSI Std. Z39.18



AFOSR 22 Aug 05
Graphical Models and Collective Choice

Whitman Richards

MIT 32-364 Cambridge, Ma 02139 whit@csail.mit.edu
617-253-5776 Fax: 617-253-8335

Project Summary
Graphical models have led to important advances in probabilistic reasoning

(Pearl, 1988.) We have applied similar constraints on decision-making by
groups of individuals. A graphical model makes explicit relations among
alternatives in the choice domain, and is a way of representing the mental
models of voters. The form of the model, and the degree to which members of
the group respect the model, play key roles in achieving consensus. The results
have implications for social choice, decision-making, belief dynamics, man-
machine interactions that entail interface agents, command and control, and the
ease with which small groups of constituents are able to alter or block
consensus of a much larger majority.

Project Participants: John Kraemer (Dept. Brain & Cognitive Science)
Michael Coen ( Elec. Engr. & Computer Science)
Galen Pickard ( Elec. Engr. & Computer Science)

Introduction
Collective choice occurs when groups of individuals, nations, neural

assemblies, or more generally "agents" aggregate information or participate in
group decision making. The goal is to select one alternative among many. If
each agent is entitled to one vote, an obvious and common method for finding
a winning alternative is to choose the one receiving the most votes. This
procedure, called the Plurality procedure, is the one typically implemented in
"winner-take-all" networks. Unfortunately, in noisy or controversial choices,
this winner may represent the opinions of only a very small percent of the
population. If such a winner were challenged head-to-head by another
alternative in a pair-wise contest, the outcome frequently will be different
(Saari, 1991.)

A more realistic scenario assumes voters (or agents) have some minimal
information about the set of choices (Runkel, 1956), and use this information to
decide for whom to vote (Saari, 1994.) Some of this information may be in the
form of institutional constraints (Schelling, 1971; Young, 1998.) In these cases,
voters will have a model of at least part of the choice set. Unlike the Plurality
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procedure, alternative choices now play an important role in the vote, for
example when first choices are thwarted or not viable. When such information is 6
incorporated into a tally, two maximum likelihood methods for aggregating
votes are the Borda Count (Borda, 1786) and the Condorcet tally (Condorcet,
1785), as shown by Young (1986.) Both procedures utilize information provided
by a voter's preference rankings of alternatives. The Borda Count uses this
information by weighting a voter's preferences inversely to rank; the Condorcet
tally proceeds by conducting pairwise comparisons between all alternatives.
Outcomes from both procedures are highly correlated (Richards, 2005.) Here we
have favored the Condorcet procedure because instabilities in outcomes are
made explicit when no alternative can be found that will beat all others. Indeed,
as shown in Fig. 1, if individuals cast votes haphazardly without constraint on
their preference rankings of alternatives, then typically NO Condorcet winner
will be found. This finding is inconsistent with real life scenarios, implying that
voters indeed have shared models about how alternatives in the choice set are
related. The primary focus of our research has been to explore how perturbations 6
in any shared model of the domain (or equivalently, the individuals' belief
structures) will disrupt consensus.
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Rgure 1: Top curve: random preference orders. Botborn curve: preference orders of
voters respect a shared domain model relating altern atv es.

2.0 The Shared Model Constraint
2.1 Graphical Model M,,:

To clarify how a shared model for the domain constrains a voter's or
agent's preference rankings, consider the graphical model M/, in Fig. 2. There are
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four alternatives, a,, a2, a3, a4. An edge ij connecting two alternatives indicates a
0 non-metric similarity relationship between ai and aj (Shepard 1980, Borg &

Lingoes 1987.) The main assumption is that if an agent most prefers alternative aj,
then that agent's second choices will be those alternatives aj that are most similar

I 4 a1  _ _ 6.a

0a 2 Zýa\ at7

a3̀  a`

Figmre 2: Set of Partial.Orders Induced from

to his ideal point ai. For example, given this particular model M,, if an agent's
first choice is a3, then equally preferred second choices will be a,, a2 and a4 will
be the least desirable choice. Thus each agent has a (weak) preference ordering
over the alternatives in the choice set, induced from the shared global model, M,.
(Details are discussed elsewhere: Richards et al 1998, 2002; Richards 2005.)

2.2 Definitions and Notation
Let w = (w I... w) be the normalized weights over the n preference types --

i.e., wi is the proportion of voters with ideal point ai and thus the proportion of
voters with the partial order Di over the set of alternatives A. Let I aj > ak I denote

0 the number of voters for whom aj is preferred to ak. Then an alternative aj E A is
the alternative most preferred by the group if for all ak E A, ak =/= aj, I aj > akl > I
ak > a.). Hence, aj is the top-ranked alternative or, more simply, "the winner".
The Condorcet tally method, which evaluates all pairs of alternatives, is used to
find this winner.

Very often in noisy contests, there will not be a Condorcet winner. Rather,
one alternative aj may beat ak in a pair-wise comparison, but ak is beaten by ai,
which in turn beats aj. If either aj, aj, or ak also beat all remaining n-3 alternatives,

0 then there is a top-cycle and no winner. We call such outcomes unstable.
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Stability (or conversely, the instability of an outcome): For a fixed set of 6
alternatives and model Mn, the stability of an outcome is the probability that there
will not be a top-cycle, or, equivalently, that there will be a unique Condorcet
winner (excluding ties.)

Not to be confused with the stability is the robustness of an outcome. For example,
an outcome may not include top-cycles, but still be very sensitive to the choice of
weights, or to the particular form of the model M,.

Robustness: The robustness of an outcome is the likelihood that perturbations in the 0
edge set for model Mn, or fluctuations in the weights on alternatives will lead to a
different winner.

Note that stability measures the ease with which an outcome can be overturned by
another alternative, whereas robustness tests whether or not the same outcome will 0
be reached following some perturbation.

2.3 Methods: Our results are largely based on Monte Carlo simulations. The
procedure is to construct a connected graph with n vertices and edge probability •
p. (For most of these simulations, p = 1/2.) In the ideal case, with no "noise" and
faithful voting, the random graph (i.e. the model Mn ) determines the set of n
feasible preference orders, with each preference order assigned a weight wi, i =
1,....n, drawn uniformly from the interval [0,10001. These weights create an n-
tuple wi representing the distribution of voters over feasible preferences. We then •
evaluate all pairs of alternatives to determine whether one alternative beats all
others using the Condorcet tally. The number of trials varied between 200 and
500 depending upon the probability of no-winner. Because of the high correlation
between the Borda and Condorcet winners, (>90%), the presence of Condorcet
top-cycles gives a good indication of the likelihood that a Borda winner can be
overturned. The maximum average error in the results is about 3 percent.

3.0 Robustness
Robustness impacts stability analysis in two ways: (i) the choice of tally

procedure and (ii) the relative roles of model M, compared with weight variations
on alternatives.

The simplest and most common method for choosing winners among a set
of alternatives is simple Plurality, i.e. a winner-take-all. This procedure ignores
any model relating alternatives, because the outcome is that alternative with the
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maximum number of votes (or here, equivalently, the maximum weight node in
the graphical version of Mn.) The plurality winner need not be a majority winner,
and in extreme cases will garner only as few percent of the total votes. Not
surprisingly, this winner will be very easy to overturn, and hence is not robust. In
contrast, the Condorcet and Borda procedures favored here are quite robust to
variations in voting strengths if there is some modicum of relationships among
alternatives (Young 1986.) These two procedures are highly correlated (>90%)
with the most likely winner being that alternative receiving the most support from
many similar alternatives. Hence variations in voting strengths for one alternative
become diluted with much less impact. Elsewhere we have documented the
robustness of the Borda and Condorcet tallies over the more common winner-
take-all Plurality methods. (Richards & Seung 2004, Richards, 2005a.)

" "different models,
80 same wigts

S different weights,
S60 , same models
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S20
2L)

CD.

0
0 5 10 15 20 25 100

Number of Alternati s

Figure 3: FRobustness of wnners to perturbations in ether weights on nodes
(open diamonds) or to the sfructure of model (fgray friangles.)}ncbl s are
random graph s; weights are taken from a uniform disfriW I jon.

To further reinforce the importance of model Mn in a choice domain, rather
than weights on alternatives, consider Figure 3. In this figure, the two curves differ
in whether the structure of the domain model is altered, or whether the weights on
vertices (alternatives) are changed. Again, as will be inferred unless otherwise
noted, weights that voters place on vertices in M, are chosen from a uniform

distribution, and the graphical model Mn with n vertices is a random graph with all
edges bi-directional with edge probability of one-half. The directed graphs Di
governing a voter's preference orders are limited to the ideal point and its
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neighbors in Mn, with all lower ranked preferences taken as equivalent (i.e.
indifferent.) The open diamonds show that when the domain model is held fixed, 0
but a second set of weights on alternatives are chosen from a uniform distribution,
there is little change in the percent of agreement in outcomes, which remains
roughly constant at 40% for n <30 and 1/2<p<2/3. (This percent varies with level
of "noise on weights" introduced, but still remains essentially flat over the
indicated range.) In contrast, when the weights are held fixed, but applied to two
different random models for Mn, there is a dramatic fall in agreement between the
two winners (gray triangles.)

Finding #1: The shared model Mn plays a dominant role in robustness of outcomes.

Elsewhere we have shown that for n>10 the expected agreement in
Condorcet outcomes declines linearly with the number of vertices in Mn that are
revised. Specifically, the relation is (n-k)/n, where k is the number of vertices in •
Mn whose edge sets have been altered (Richards, 2005b.) This finding has led to
an insight regarding the relation between measures of prediction of outcomes (d')
and the information content of a graphical model, to be described briefly in
section 6.0.

4.0 Perturbing the Graphical Model

4.1 Directional edges for Mn (Digraphs)
The lowest curve in Fig. 1 (open circles) shows the power of the shared

model Mn in helping to achieve consensus: the chance of no winner is less than

5%. Hence model Mn provides enormous stability in outcomes, because the
likelihood of no-winner is small. We now relax the constraints imposed on Mn•

Let us continue to require that each voter's preference ordering on
alternatives be fixed. However, the shared model Mn with bi-directional edges S
will be replaced by a new form of Mn with directed edges. (The Di's as before
will be limited to three levels as in Fig. 2.) The perturbation is equivalent to

choosing edges at random from a uniform distribution of all nC2 *2 edges.
The top curve in Fig. 4 (filled squares) shows the probability of top-cycles

when all voters rearrange their edges in Mn, choosing new neighbors from a
uniform distribution of (n-l) vertices. (Hence for p = 1/2, about one-half (0.4) of
the links between vertices will be bi-directional.) For this condition, note the
maximum of roughly 20% compared with only 4% of top cycle outcomes for the
ideal bi-directional Mn (lowest curve.) Significantly, unlike random noise on
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alternative weights, as the number of alternatives becomes large, the odds for no
unique winner become small.

40

Randm g'aphsp= 1/2

30

all edges direted one directed edge

6 620z

10 0 1a

0 10

3 4 6 8 10 12 15 20 30 40 60

Number ci Alternatives

Figure 4: Probablityof top-cycles (i.e. no Yinner) M en Ihe shared domain model is
r tur bed (top and middle5 versus the ideal case Mere all preferen ce orders respect
he domain model (sdid cots.)

Between these two cases of all bidirectional or mostly directed edges in
M, is shown another, much less extreme "miss-matched" condition where only
one type of voter rearranges only one edge (open circles.) An intermediate miss-

0 match is if all voters rearrange only one relationship in the global domain model
Mn ; the result is similar and roughly intermediate between the solid squares and
open circles. In the complementary miss-match where only one type of voter
rearranges all edges, again the result is also an intermediate curve with a
maximum near 8 alternates. These results are surprising: even one type of voter

* with directed edges has a disturbing effect on the probability of consensus and
the effect is roughly equivalent to all voters mismatching one relationship.

Finding #2: A random assignment of directional edges in the shared domain
model Mn raises the probability of no winner by about 5-fold, as compared with
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a random assignment of bi-directional edges. Hence consensus favors groups
where voters see relationships in the domain in a reciprocal fashion. 6

4.2 Subgroups of Voters who violate M.
Here we explore further the condition where most of the population will

agree on a model for the domain and vote accordingly, but a smaller segment will
have beliefs and preference orders inconsistent with the shared model held by the
majority. As before, the manipulation is for each individual to vote their first
choice but otherwise choose alternatives arbitrarily during each tally, ignoring the
shared model M,. The fraction of haphazard votes cast will be the main
independent variable. Obviously, as the number of haphazard votes increases, the 0
probability of no-winner will also increase (see Figs. 1 & 4.) We can increase the
odds for such negative outcomes in two ways: (i) by adding more uncertain (or
rogue) voters who always vote haphazardly, or (ii) by distributing the haphazard
votes across all voters. As will be shown, one set of curves predicts the
unsuccessful outcome in both cases. 41

The solid curves in Fig. 5 show the probability of no Condorcet winner
when varying amounts of noise or uncertainty is distributed uniformly across all
voters, for all choices other than their first choice. Each curve represents the
result for different random graphs having vertices ranging from 3 to 100, with
edge probability of one-half. These results are rather insensitive to whether the
random graph is sparse or dense, specifically for edge probabilities ranging
from 1/4 to 3/4. Note that the slope of the curves is about one over most of the
range, with the percent no-winner proportional to the uncertainty for a random
graph of known size n. As the size, n, of these graphs increases, so does the 0
effects of uncertainty or noise in the aggregation process. The translation from
one curve to another is approximately O(n2) as n increases.

Finding #3: Even a small percent of haphazard votes (e.g. 10%) can have severe
consequences on achieving successful outcomes for choice sets larger than 0
twelve alternatives.

We turn next to the dashed lines in Fig 5. These summarize results when
a small group of voters are uncertain, and vote haphazardly 100% of the time.
(Recall that the voting power for any type of voter is chosen from a uniform
distribution of weights.) For a single type of rogue voter among a group of four
types (alternatives), the effect on the outcome will be equivalent to distributing

10
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The noise over 25% of the total votes cast. Hence the dashed curve labeled "1
voter" crosses the 4- alternative solid curve at a point directly above 25% noise
on the abscissa, corresponding to about 12% no-winners in each case.
Similarly, if there are eight different voter types (i.e. a random graph relating
eight alternatives), then the same dashed line labeled "1 voter" will cross the 8-
alternative solid curve directly above 1/8 = 12% noise, corresponding to about

10]

80 -60 1

i_60 .. .....

04

40 -60 1%.

0 12
30 0- 4

15
88

100 20
- 20 '4 3voters

11 1003 40 ......

L)

10 **0

40
8

4

6 8

1 1.5 2 34 6 8 10 15 20 30 40 60 100

Percent "Nose" or Uncertainty

Figure 5: Solid curves: Nobise dstributed evenly among all agents.
Numbers indicate size of random graph

22% no winners whether or not the noise is concentrated in one type of voter, or
distributed across all voters. For three voters, the calculation is similar, simply
finding the noise equivalent if all rogue voter's votes were distributed across all
voters. The lowest dashed curve labeled 1/2-voter corresponds to one voter who
votes haphazardly 50% of the time.
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Finding # 4: Regardless whether a fixed number of uncertain votes are cast as a
block for one or more alternatives, or distributed over all voters, the disruption of
consensus will be the same.

4.3 Haphazard votes for third or less desired alternative
One might expect in practice that uncertainty will increase for less

preferred alternatives. In other words, given two alternatives being compared, if
these alternatives are third or fourth ranked in an voter's preference ordering,
uncertainty over which to favor should be much higher than for the first and
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second choices. Consider then voters who introduce noise only if both of the
two alternatives being contested are third or higher choices. Thus in the shared
domain model, the voter's first choice or ideal point is not adjacent to the two
contested alternatives. Fig. 6 shows the results are dramatically different from
the previous case presented in section 4.2 and Fig. 5.

First, although only results for 40 vertex random graphs are shown, the
size of the graph (n > 10) makes little difference in the main effect. Rather,
unlike the earlier results, here the edge probability of M. (or G,) drastically
changes the relations between voter uncertainty and the probability of no
winner. For highly connected random graphs [ p(e) -> 1 ], noise is ineffective -
as expected as the graphical covering becomes complete. Whereas for sparse
graphs such as chains, an almost trivial amount of noise or uncertainty can
create a high probability of no-winners.

We also see a rather pleasing correlation between the edge probability of
Mn (i.e. Gn) and the asymptotic slope of the relation between no-winners and
uncertainty or noise. As the noise approaches zero, the slopes of the curves are
(1-p)/p for edge probability p. The cases for p = 1/2 and p = 1 illustrate. When
p = 1, the slope is zero; whereas for p = 1/2 the asymptotic slope is one.

Finding # 5: The sparseness of Mn (i.e the edge probability in Gn) has very
significant effects on consensus when uncertainty in voting occurs only for third
or less desirable options.

Note: further related results appear in Richards, 2005a.

5.0 Information and d'
In the course of exploring similarity measures between two different

graphical models, a relation between Shannon Information content (in bits) and
Signal Detection measures (d') was discovered. Although such a relation has been
sought since the 60's, there is no convincing proposal (Luce, 2003), excepting that
of Birdsall (1955) where the criterion Beta was specified for several different, quite
specific situations. Our new insight comes from the study of how one individual,
with his particular graphical model, might predict the choice of winner of another
individual with a different graphical model. It can be shown that the false positives
and misses of one's ability to predict the other's responses are then equal, on the
average. Thus, the hit rate can be translated into an information measure, without
worry about the false positive rate, which is known. The theoretical framework we
choose to prove this assertion is adapted from Ihler, Fisher & Willsky (2004). The

* key is to use the Kullbach-Leibler divergence as a dissimilarity distance between
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the two graphical models. Unfortunately, the write-up with John Fisher has been
delayed. The target for an MIT Al Memo is November.

Finding #6: Our paper will answer a 40 yr old question of how d' and bits can be
rigorously related. This result opens the door to assigning information measures
(bits) to predictions about categorical assertions, and, indirectly, may provide a
measure (in bits) for the significance of cognitive events.

= 8.4
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Fig. 7: Similarity between two graphical models is defined as the percent of vertces
with edges in common. Diversityis the opmsi te: one minus similarity. The gra phs
show how to ma mize diversity in indi vdual cognitive structures (represen ted as
graphical mocels )while stll maintaining god communication between members of
a groupof sizes 2, 3, and 5. The optma graphical similarity btween the
memlbrs' models should be one-third (ie. diversity equals two-thirds.)

Another twist on this problem is when two parties wish to collaborate. Each
party should bring to the partnership different perspectives (i.e. models), but at the
same time they must interact without misunderstandings. Hence we have a trade-
off between the similarity of the two models needed for understanding (d' high)
and the dissimilarity of the models which provides different perspectives
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(information content high.) Fig. 7 illustrates that an optimal solution is when the
similarity between the graphical models is one-third, as measured by the fraction of
vertices with different edge sets. (See Richards, 2005b for further details and
elaborations.)

6.0 Neural Voting Machines
The Borda and Condorcet methods are maximum likelihood aggregation

procedures for social decision-making under uncertainty (Young, 1986.) The
Borda method is easy to implement, requiring O[n] calculations, and always will
yield a consensus, excepting ties. The Condorcet method is a tournament where
each alternative is contested pairwise with all others. This method has the
advantage of NOT yielding a winner if there is no clear majority winner, and,
furthermore, places no arbitrary weights on lower ranked preferences. The clear
disadvantage is that the pairwise comparisons require O[n2] calculations.
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A gure 8: \Alnners for gl can pared with winners forGn, Wth the numiors
alongthe cures indcaling values for k. Over the range of n, the Borca winner
matc hes 90% of the Condorcet winners (arrow.) The ma;4mum weiht node
in Gn is rarely the winner for n > 12, as shown by the curve labelled M'.

We have designed an approximate Condorcet algorithm that requires only
O[n,k] calculations, where k can be as small as 12 for 60 alternatives, or 25 for
200. The algorithm is 97% accurate, and fails by misses, not false positives. In
other words, almost invariably for random graphs, no winner is delivered when the

* algorithm fails to produce the correct winner.
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The trick is to find the largest Borda scores in the landscape of Borda
winners for the original graph Gn ( O[n] ). Then take the top k Borda winners, and 0

form the subgraph gk of Gn. These calculations are O[k 1 2], which is insignificant
compared with O[n 1 2]. Figure 8 shows the success rate of the algorithm for k = 4,
6, 8, and 12. Also shown is the percent of Borda winners that agree with the true
Condorcet winner for Gn (roughly 90%.) Note that the approximation is quite
good, and very efficient. 6

We have also designed a simple neural network that can carry out this
calculation. It has only one more layer than the Borda network. The graphical
model does not appear explicitly as we would visualize a graph. Rather, the edges
of the graphical model are made explicit. This is necessary in order to capture a
theoretical adjacency assertion needed to compute pair-wise winners. The edge
assertions can also be cast as correlations between alternatives, thus opening
possibilities for weighted edges in the graphical model, or for learning new
relationships (Richards & Seung, 2004.)

Finding #7: The major impact is probably in Theoretical Neuroscience. It is now
clear that biological systems can indeed carry out information aggregation
procedures that are much more optimal than the popular winner-take-all method.

7.0 Multimodal Dynamics: cross-modal clustering (M.H.Coen)
Graphical models that represent similarity relations among alternatives lie

at the heart of our research. How are these models learned?

A new answer to this question has been the result of Michael Coen's
research. Rather than attempting to categorize (or cluster) data obtained from
one type of source (i.e. one sensory modality), he cross-correlates information
from two different modalities, with one modality "training" the other. Thus, the
method is self-supervised. A simple example is the correlation in a video stream
between the sounds the speaker utters and her lip movements. The data from
both sources is unlabeled; in other words the input is simply two scatter plots of
points (observations.) From these data, we wish to recover meaningful phonetic
categories, or in this case, the vowels.

0

Fig. 9 shows the result for vowels. Here we have two "slices" through a
high dimensional feature space of a sound stream. Clusters emerge in each slice
through an iterated process of one slice supervising (training) the aggregation
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Fig. 9: The edges between the planar slices link clusters in the two sensory
channels; the edges within each slice show the graphical relations within
each slice. (from M. H. Coen, 2005.)

of information in the other, consistent with the evidence provided by the
correlations.

When viewed as belief systems, we see in Fig. 9 that context, here
represented as the different slices, may change similarity relations on the one
hand, but at the same time, data from different contexts can be used to learn the
basic categories of the domain.

Finding #8: First self-supervised learning algorithm using multi-modal
information.

Note: Thesis available October 05. For preliminary version see Coen 2005.
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8.0 Implications of Research

Our findings show that successful outcomes in collective decision-making 4
are strongly dependent on the integrity and form of the model of the domain
shared by the members of the group. Although we have modeled the belief
structures of the domain as a graph, and have explored stability using Condorcet
aggregation, we expect the results to generalize to other representational forms, 4
as well as to other tally procedures including non-democratic decision-making.
Regarding the latter, one might regard the beliefs of group members subject to
dictatorial rule as having little impact on the stability of the group. Our results,
however, suggest otherwise, especially if the coherence of individual beliefs
plays a role in group stability. If so, then even a small group of members can U
create an environment that is potentially unstable, easily reaching a tipping-point
(e.g. Fig. 7.) Our findings thus impact not only the understanding of group
decision-making, but also the stability of social networks, negotiations seen as
collaborations, as well as collaborations between parties with differing belief 4
structures.

9.0 References
9.1 Supported under Project:

Coen, M. H. (2005) Cross-Modal clustering. Proc. Amer. Assoc. Art. Intell.
(available at http://www.csail.mit.edu/-mhcoen/aaai05.p df)

Pickard, G. & W. Richards (2006?) Optimal Borda rank vectors. [in preparation.] 4
Richards, W. (2005a) Collective choice with uncertain domain models.

Al Memo 2005-024. (available from: http://www.ai.mit.edu/research/
publications/)

Richards, W. & S. Seung (2004) Neural Voting Machines. Al Memo 2004-029. 4
(available from: http://www.ai.mit.edu/research/publications/)

Richards, W. & S. Seung (2003) Neural Voting Machines, Proc. Cog. Sci. Soc.
Boston, MA. (an early version.)

Richards, W. & J. Fisher (2005?) Information gain associated with different
observer models [in preparation.] 4

9.2 Other citations:
Arrow, K.J. (1963) Social choice and Individual values. Wiley, NY.
Birdsall, T. (1955) The theory of signal detectability. Pp 391-401 In:

Information Theory in Psychology, Henry Quastler, ed.; Free Press,
Glencoe, Ill.

19



0

Borda, J-C. (1786) Memoire sur les elections au Scrutin. Histoire de
0 l'Academie Royal des Sciences.

Borg, I & Lingoes, J. (1987) Multidimensional Similarity structure Analysis.
Springer-Verlag, NY

Condorcet, Marquis de (1785) Essai sur l'application de l'analyse a la
probabilite des decisions rendue a la pluralite des voix, Paris (See
Arrow, 1963).

IhIer, A; J. W. Fisher; A. S. Willsky (2004) Non-parametric hypothesis tests
for statistical dependency. IEEE Trans. Signal Proc., Special Issue on
Machine Learning Methods.

Luce, D. (2003) What ever happened to information theory in psychology?
Rev. General Psych. 7, 183-188.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufman.

Richards, W. (2005b) Anigrafs (book in progress) www.ai.mit.edu/people/whit/
Richards, D., McKay, B. and Richards, W. (1998) Collective Choice and

mutual knowledge structures. Adv. in Complex Systems. 1, 221-36.
Richards, W., McKay, B. and Richards, D. (2002) Probability of Collective

Choice with shared knowledge structures. Jrl Math. Psychol. 46, 338-
351.

Runkel, P.J. (1956) Cognitive similarity in facilitating communication.
Sociometry, 19, 178-91.

Saari, D. G.: 1991, 'Erratic Behavior in Economic Models', Journal of
Economic Behavior and Organization 16, 3-35.

Saari, D. G.: 1994, Geometry of Voting, Springer-Verlag, Berlin.
Schelling, T (1971) Dynamic Models of Segregation. Jrl Math. Sociol. 1, 143-

186.
Shepard, R (1980) Multidimensional Scaling, Tree-Fitting and Clustering.

Science 210, 390-398.
Young, H.P. (1986) Optimal ranking and choices from pairwise comparisons.

In: B. Grofman & G. Owen (Eds.) Information Pooling and Group
Decision Making. JAI Press, Greenwich, CT

Young, H.P. (1998) Individual Strategy and Social Structure, Princeton.

19


